



# Development of an objective measure of movement coordination for swimmers with central motor and neuromuscular impairments

Ana Maia<sup>1</sup>, Luke Hogarth<sup>2</sup>, Brendan Burkett<sup>2</sup>, Carl Payton<sup>1</sup>

<sup>1</sup>Manchester Metropolitan University, UK <sup>2</sup>University of the Sunshine Coast, Aus







## **BACKGROUND**

- Classification aims to provide a framework for, and ensure, a fair competition
- Para swimming classification protocol review develop valid, objective and reliable measures of impairment
- Neurological impairment
  - Lack of coordination Capacity to perform a smooth, rapid and accurate movement (Fang et al., 2007)



## **BACKGROUND**

- Swimmers with hypertonia, ataxia and athetosis undertake physical assessment involving repetitive single-joint actions at increasing speed
- Each joint scored from 0 to 5 based on subjective assessment of the movement
- Tests not suitable for evidence-based classification
  - high dependent on clinical judgment
  - lack key measurement properties required for evidence-based classification, e.g. reliable, precise, ratio-scaled (Tweedy et al., 2016)



## **AIM**

To develop a revised test protocol based on the existing WPS physical assessment for swimmers with central motor and neuromuscular impairments incorporating measures of movement smoothness, rhythm and accuracy

## **HYPOTHESIS**

Para athletes with central motor and neuromuscular impairments will present a less coordinated movement than able bodied participants

## **METHODS**

**Participants** 

19 Able Bodied 19 Para Athletes Quadriplegic

Hemiplegic

Diplegic

#### **Data Collection**



### Accuracy

- Physical Target
- 80% max active ROM
- % of cycles on the same sector

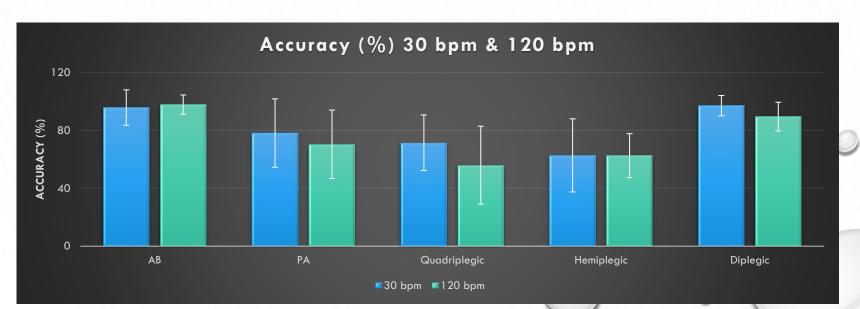


#### **Speed**

- Metronome (30 bpm & 120 bpm)
- 'Rhythm error'
- Time between beat and hand contact

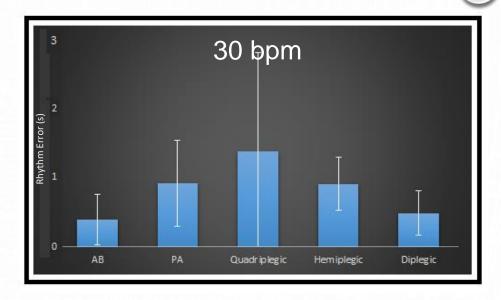


#### **Smoothness**

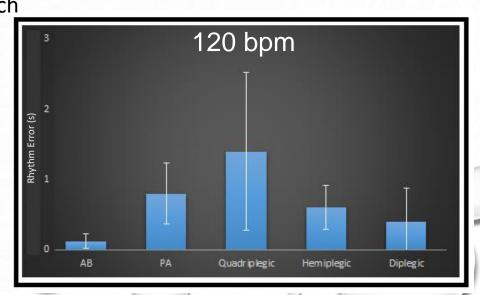

- Accelerometer (GENEActiv 100 Hz)
- Nº acceleration peaks



# **FINDINGS - Accuracy**



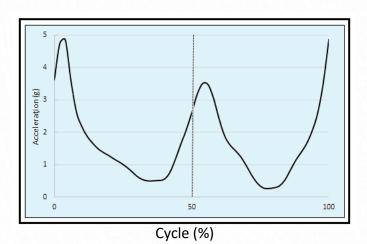

- AB group significantly more accurate than PA group
- PA group
  - ✓ Irregular path trajectory
  - ✓ Lack of neural feedback control (Chang et al., 2005)
- No significant difference between Hemiplegic and Quadriplegic sub-groups



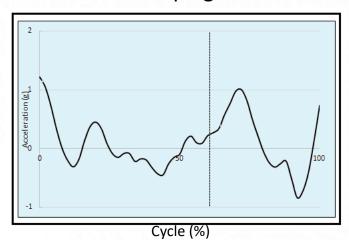

# **FINDINGS - Speed**



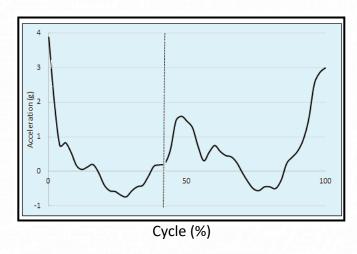



- 20s trial 30 bpm 2.5 arm cycles 8s each 120 bpm 10 arm cycles 2s each
- Rhythm error = adherence to metronome
- Continuous, cyclic movement ≠ Episodic movement
- AB group significantly lower rhythm error
- PA sub-groups rhythm error:
  Diplegic < Hemiplegic < Quadriplegic</li>




# **FINDINGS - Smoothness**

# Non-dominant upper limb acceleration profile - 120 bpm


#### **Able Bodied**

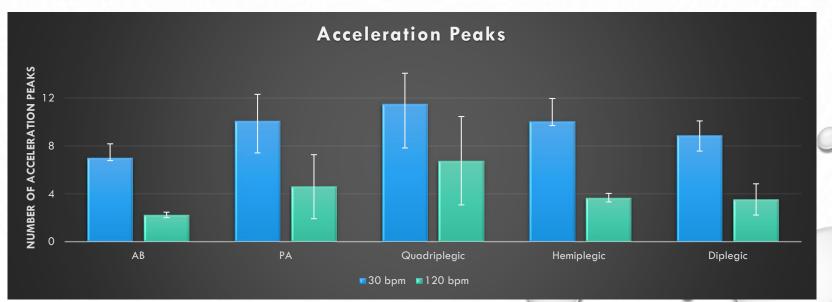


## Hemiplegic



#### Diplegic




Quadriplegic



# **FINDINGS - Smoothness**



- Nº of peaks a valid measure of movement smoothness (Roher et al., 2002; Balasubramanian et al., 2015)
- PA group significantly less smooth than AB group at both speeds
- Trend for Nº of peaks to increase
  Diplegic-Hemiplegic-Quadriplegic



## **SUMMARY**

 Para athletes performed significantly worse than able-bodied participants in all three elements of movement coordination

- PA sub-groups: Quadriplegic athletes were found to be less accurate, smooth and higher rhythm error
- The objective metrics assessed in this study could be implemented in the protocol currently being used for classifying swimmers with coordination issues





# Thank you for your attention







